Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1694, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973285

RESUMO

N6-methyladenosine (m6A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m6A epitranscriptomic networks. Here, we investigate Li-Fraumeni syndrome (LFS)-associated neoplastic transformation driven by mutant p53 in iPSC-derived astrocytes, the cell-of-origin of gliomas. We find that mutant p53 but not wild-type (WT) p53 physically interacts with SVIL to recruit the H3K4me3 methyltransferase MLL1 to activate the expression of m6A reader YTHDF2, culminating in an oncogenic phenotype. Aberrant YTHDF2 upregulation markedly hampers expression of multiple m6A-marked tumor-suppressing transcripts, including CDKN2B and SPOCK2, and induces oncogenic reprogramming. Mutant p53 neoplastic behaviors are significantly impaired by genetic depletion of YTHDF2 or by pharmacological inhibition using MLL1 complex inhibitors. Our study reveals how mutant p53 hijacks epigenetic and epitranscriptomic machinery to initiate gliomagenesis and suggests potential treatment strategies for LFS gliomas.


Assuntos
Glioma , Síndrome de Li-Fraumeni , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Síndrome de Li-Fraumeni/genética , Transformação Celular Neoplásica/genética , Glioma/genética , Proteoglicanas/metabolismo
2.
Nat Commun ; 14(1): 551, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759613

RESUMO

Regulation of RNA processing contributes profoundly to tissue development and physiology. Here, we report that serine-arginine-rich splicing factor 1 (SRSF1) is essential for hepatocyte function and survival. Although SRSF1 is mainly known for its many roles in mRNA metabolism, it is also crucial for maintaining genome stability. We show that acute liver damage in the setting of targeted SRSF1 deletion in mice is associated with the excessive formation of deleterious RNA-DNA hybrids (R-loops), which induce DNA damage. Combining hepatocyte-specific transcriptome, proteome, and RNA binding analyses, we demonstrate that widespread genotoxic stress following SRSF1 depletion results in global inhibition of mRNA transcription and protein synthesis, leading to impaired metabolism and trafficking of lipids. Lipid accumulation in SRSF1-deficient hepatocytes is followed by necroptotic cell death, inflammation, and fibrosis, resulting in NASH-like liver pathology. Importantly, SRSF1-depleted human liver cancer cells recapitulate this pathogenesis, illustrating a conserved and fundamental role for SRSF1 in preserving genome integrity and tissue homeostasis. Thus, our study uncovers how the accumulation of detrimental R-loops impedes hepatocellular gene expression, triggering metabolic derangements and liver damage.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Fatores de Processamento de RNA/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , RNA Mensageiro/metabolismo , Processamento Alternativo
3.
Nucleic Acids Res ; 51(D1): D1549-D1557, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36321651

RESUMO

RNA binding proteins (RBPs) are central regulators of gene expression implicated in all facets of RNA metabolism. As such, they play key roles in cellular physiology and disease etiology. Since different steps of post-transcriptional gene expression tend to occur in specific regions of the cell, including nuclear or cytoplasmic locations, defining the subcellular distribution properties of RBPs is an important step in assessing their potential functions. Here, we present the RBP Image Database, a resource that details the subcellular localization features of 301 RBPs in the human HepG2 and HeLa cell lines, based on the results of systematic immuno-fluorescence studies conducted using a highly validated collection of RBP antibodies and a panel of 12 markers for specific organelles and subcellular structures. The unique features of the RBP Image Database include: (i) hosting of comprehensive representative images for each RBP-marker pair, with ∼250,000 microscopy images; (ii) a manually curated controlled vocabulary of annotation terms detailing the localization features of each factor; and (iii) a user-friendly interface allowing the rapid querying of the data by target or annotation. The RBP Image Database is freely available at https://rnabiology.ircm.qc.ca/RBPImage/.


Assuntos
Bases de Dados Factuais , Imagem Óptica , Proteínas de Ligação a RNA , Humanos , Anticorpos/metabolismo , Células HeLa , RNA/química , Proteínas de Ligação a RNA/metabolismo , Células Hep G2
4.
Cell Rep ; 38(10): 110481, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263585

RESUMO

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , MicroRNAs/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34297039

RESUMO

Cytosolic double-stranded RNA (dsRNA) initiates type I IFN responses. Endogenous retroelements, notably Alu elements, constitute a source of dsRNA. Adenosine-to-inosine (A-to-I) editing by ADAR induces mismatches in dsRNA and prevents recognition by MDA5 and autoinflammation. To identify additional endogenous dsRNA checkpoints, we conducted a candidate screen in THP-1 monocytes and found that hnRNPC and ADAR deficiency resulted in synergistic induction of MDA5-dependent IFN responses. RNA-seq analysis demonstrated dysregulation of Alu-containing introns in hnRNPC-deficient cells via utilization of unmasked cryptic splice sites, including introns containing ADAR-dependent A-to-I editing clusters. These putative MDA5 ligands showed reduced editing in the absence of ADAR, providing a plausible mechanism for the combined effects of hnRNPC and ADAR. This study contributes to our understanding of the control of repetitive element-induced autoinflammation and suggests that patients with hnRNPC-mutated tumors might maximally benefit from ADAR inhibition-based immunotherapy.


Assuntos
Adenosina Desaminase/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Interferon Tipo I/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Adenosina Desaminase/metabolismo , Elementos Alu , Sistemas CRISPR-Cas , Citosol/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Humanos , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Íntrons , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Células THP-1
6.
Mol Cell ; 80(3): 452-469.e9, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157015

RESUMO

Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.


Assuntos
Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/genética , Processamento Alternativo , Animais , Proteínas de Ciclo Celular/metabolismo , Éxons , Perfilação da Expressão Gênica/métodos , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Interferência de RNA , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo
7.
Genome Biol ; 21(1): 90, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252787

RESUMO

BACKGROUND: A critical step in uncovering rules of RNA processing is to study the in vivo regulatory networks of RNA binding proteins (RBPs). Crosslinking and immunoprecipitation (CLIP) methods enable mapping RBP targets transcriptome-wide, but methodological differences present challenges to large-scale analysis across datasets. The development of enhanced CLIP (eCLIP) enabled the mapping of targets for 150 RBPs in K562 and HepG2, creating a unique resource of RBP interactomes profiled with a standardized methodology in the same cell types. RESULTS: Our analysis of 223 eCLIP datasets reveals a range of binding modalities, including highly resolved positioning around splicing signals and mRNA untranslated regions that associate with distinct RBP functions. Quantification of enrichment for repetitive and abundant multicopy elements reveals 70% of RBPs have enrichment for non-mRNA element classes, enables identification of novel ribosomal RNA processing factors and sites, and suggests that association with retrotransposable elements reflects multiple RBP mechanisms of action. Analysis of spliceosomal RBPs indicates that eCLIP resolves AQR association after intronic lariat formation, enabling identification of branch points with single-nucleotide resolution, and provides genome-wide validation for a branch point-based scanning model for 3' splice site recognition. Finally, we show that eCLIP peak co-occurrences across RBPs enable the discovery of novel co-interacting RBPs. CONCLUSIONS: This work reveals novel insights into RNA biology by integrated analysis of eCLIP profiling of 150 RBPs with distinct functions. Further, our quantification of both mRNA and other element association will enable further research to identify novel roles of RBPs in regulating RNA processing.


Assuntos
Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Células Hep G2 , Humanos , Imunoprecipitação , Íntrons , Células K562 , RNA/metabolismo , Splicing de RNA , RNA Ribossômico/metabolismo , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Spliceossomos/metabolismo
8.
Nat Cancer ; 1(4): 410-422, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-34109316

RESUMO

Aggressive myeloid leukemias such as blast crisis chronic myeloid leukemia and acute myeloid leukemia remain highly lethal. Here we report a genome-wide in vivo CRISPR screen to identify new dependencies in this disease. Among these, RNA-binding proteins (RBPs) in general, and the double-stranded RBP Staufen2 (Stau2) in particular, emerged as critical regulators of myeloid leukemia. In a newly developed knockout mouse, loss of Stau2 led to a profound decrease in leukemia growth and improved survival in mouse models of the disease. Further, Stau2 was required for growth of primary human blast crisis chronic myeloid leukemia and acute myeloid leukemia. Finally, integrated analysis of CRISPR, eCLIP and RNA-sequencing identified Stau2 as a regulator of chromatin-binding factors, driving global alterations in histone methylation. Collectively, these data show that in vivo CRISPR screening is an effective tool for defining new regulators of myeloid leukemia progression and identify the double-stranded RBP Stau2 as a critical dependency of myeloid malignancies.


Assuntos
Crise Blástica , Leucemia Mieloide Aguda , Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Leucemia Mieloide Aguda/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética
9.
Nat Commun ; 10(1): 1338, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902979

RESUMO

Allele-specific protein-RNA binding is an essential aspect that may reveal functional genetic variants (GVs) mediating post-transcriptional regulation. Recently, genome-wide detection of in vivo binding of RNA-binding proteins is greatly facilitated by the enhanced crosslinking and immunoprecipitation (eCLIP) method. We developed a new computational approach, called BEAPR, to identify allele-specific binding (ASB) events in eCLIP-Seq data. BEAPR takes into account crosslinking-induced sequence propensity and variations between replicated experiments. Using simulated and actual data, we show that BEAPR largely outperforms often-used count analysis methods. Importantly, BEAPR overcomes the inherent overdispersion problem of these methods. Complemented by experimental validations, we demonstrate that the application of BEAPR to ENCODE eCLIP-Seq data of 154 proteins helps to predict functional GVs that alter splicing or mRNA abundance. Moreover, many GVs with ASB patterns have known disease relevance. Overall, BEAPR is an effective method that helps to address the outstanding challenge of functional interpretation of GVs.


Assuntos
Alelos , Variação Genética , Proteínas de Ligação a RNA/metabolismo , RNA/genética , Regiões 3' não Traduzidas/genética , Motivos de Aminoácidos , Sequência de Bases , Biologia Computacional , Simulação por Computador , Doença/genética , Predisposição Genética para Doença , Células Hep G2 , Humanos , Células K562 , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Locos de Características Quantitativas/genética , RNA Helicases/metabolismo , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transativadores/metabolismo
10.
Commun Biol ; 2: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652130

RESUMO

Adenosine-to-inosine (A-to-I) editing, mediated by the ADAR enzymes, diversifies the transcriptome by altering RNA sequences. Recent studies reported global changes in RNA editing in disease and development. Such widespread editing variations necessitate an improved understanding of the regulatory mechanisms of RNA editing. Here, we study the roles of >200 RNA-binding proteins (RBPs) in mediating RNA editing in two human cell lines. Using RNA-sequencing and global protein-RNA binding data, we identify a number of RBPs as key regulators of A-to-I editing. These RBPs, such as TDP-43, DROSHA, NF45/90 and Ro60, mediate editing through various mechanisms including regulation of ADAR1 expression, interaction with ADAR1, and binding to Alu elements. We highlight that editing regulation by Ro60 is consistent with the global up-regulation of RNA editing in systemic lupus erythematosus. Additionally, most key editing regulators act in a cell type-specific manner. Together, our work provides insights for the regulatory mechanisms of RNA editing.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Regulação Neoplásica da Expressão Gênica , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/genética , Elementos Alu , Autoantígenos/genética , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Inosina/genética , Células K562 , Lúpus Eritematoso Sistêmico/genética , RNA Citoplasmático Pequeno/genética , Ribonucleoproteínas/genética , Análise de Sequência de RNA , Transcrição Gênica , Transfecção
11.
Nat Neurosci ; 22(1): 25-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559470

RESUMO

Transcriptomic analyses of postmortem brains have begun to elucidate molecular abnormalities in autism spectrum disorder (ASD). However, a crucial pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of postmortem brains of people with ASD. We observed a global bias for hypoediting in ASD brains, which was shared across brain regions and involved many synaptic genes. We show that the Fragile X proteins FMRP and FXR1P interact with RNA-editing enzymes (ADAR proteins) and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA-editing alterations in ASD and Fragile X syndrome, establishing this as a molecular link between these related diseases. Our findings, which are corroborated across multiple data sets, including dup15q (genomic duplication of 15q11.2-13.1) cases associated with intellectual disability, highlight RNA-editing dysregulation in ASD and reveal new mechanisms underlying this disorder.


Assuntos
Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Transtorno Autístico/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Perfilação da Expressão Gênica , Humanos , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Cancer Discov ; 7(4): 410-423, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28188128

RESUMO

Recent studies have characterized the extensive somatic alterations that arise during cancer. However, the somatic evolution of a tumor may be significantly affected by inherited polymorphisms carried in the germline. Here, we analyze genomic data for 5,954 tumors to reveal and systematically validate 412 genetic interactions between germline polymorphisms and major somatic events, including tumor formation in specific tissues and alteration of specific cancer genes. Among germline-somatic interactions, we found germline variants in RBFOX1 that increased incidence of SF3B1 somatic mutation by 8-fold via functional alterations in RNA splicing. Similarly, 19p13.3 variants were associated with a 4-fold increased likelihood of somatic mutations in PTEN. In support of this association, we found that PTEN knockdown sensitizes the MTOR pathway to high expression of the 19p13.3 gene GNA11 Finally, we observed that stratifying patients by germline polymorphisms exposed distinct somatic mutation landscapes, implicating new cancer genes. This study creates a validated resource of inherited variants that govern where and how cancer develops, opening avenues for prevention research.Significance: This study systematically identifies germline variants that directly affect tumor evolution, either by dramatically increasing alteration frequency of specific cancer genes or by influencing the site where a tumor develops. Cancer Discovery; 7(4); 410-23. ©2017 AACR.See related commentary by Geeleher and Huang, p. 354This article is highlighted in the In This Issue feature, p. 339.


Assuntos
Genoma Humano , Genômica , Mutação em Linhagem Germinativa/genética , Neoplasias/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , PTEN Fosfo-Hidrolase/genética , Fosfoproteínas/genética , Polimorfismo Genético , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Serina-Treonina Quinases TOR/genética
13.
Nat Genet ; 49(3): 457-464, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092684

RESUMO

Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.


Assuntos
Doenças Cerebelares/genética , Exonucleases/genética , Mutação/genética , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Alelos , Animais , Feminino , Humanos , Masculino , Camundongos , Doenças Neurodegenerativas/genética , RNA Mensageiro/genética , Spliceossomos/genética , Peixe-Zebra
14.
Methods ; 118-119: 50-59, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28003131

RESUMO

Identification of in vivo direct RNA targets for RNA binding proteins (RBPs) provides critical insight into their regulatory activities and mechanisms. Recently, we described a methodology for enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP) using antibodies against endogenous RNA binding proteins. However, in many cases it is desirable to profile targets of an RNA binding protein for which an immunoprecipitation-grade antibody is lacking. Here we describe a scalable method for using CRISPR/Cas9-mediated homologous recombination to insert a peptide tag into the endogenous RNA binding protein locus. Further, we show that TAG-eCLIP performed using tag-specific antibodies can yield the same robust binding profiles after proper control normalization as eCLIP with antibodies against endogenous proteins. Finally, we note that antibodies against commonly used tags can immunoprecipitate significant amounts of antibody-specific RNA, emphasizing the need for paired controls alongside each experiment for normalization. TAG-eCLIP enables eCLIP profiling of new native proteins where no suitable antibody exists, expanding the RBP-RNA interaction landscape.


Assuntos
Sistemas CRISPR-Cas , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Ligação a RNA/genética , RNA/química , Coloração e Rotulagem/métodos , Anticorpos/química , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Endonucleases/química , Células HEK293 , Recombinação Homóloga , Humanos , Células K562 , Peptídeos/química , Reação em Cadeia da Polimerase , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma
15.
Cell Rep ; 15(3): 666-679, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27068461

RESUMO

Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP), we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region and binding site levels, IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3' UTR-enriched targets. RNA Bind-N-seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and increase in cell death. For cell adhesion, we find IMP1 maintains levels of integrin mRNA specifically regulating RNA stability of ITGB5 in hPSCs. Additionally, we show that IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Imunoprecipitação/métodos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Adesão Celular , Sobrevivência Celular , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Integrinas/metabolismo , Motivos de Nucleotídeos/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
16.
Nat Methods ; 13(6): 508-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27018577

RESUMO

As RNA-binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNA molecules, binding site identification by UV crosslinking and immunoprecipitation (CLIP) of ribonucleoprotein complexes is critical to understanding RBP function. However, current CLIP protocols are technically demanding and yield low-complexity libraries with high experimental failure rates. We have developed an enhanced CLIP (eCLIP) protocol that decreases requisite amplification by ∼1,000-fold, decreasing discarded PCR duplicate reads by ∼60% while maintaining single-nucleotide binding resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP improves specificity in the discovery of authentic binding sites. We generated 102 eCLIP experiments for 73 diverse RBPs in HepG2 and K562 cells (available at https://www.encodeproject.org), demonstrating that eCLIP enables large-scale and robust profiling, with amplification and sample requirements similar to those of ChIP-seq. eCLIP enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP and RNA-centric perspectives on RBP activity.


Assuntos
Perfilação da Expressão Gênica/métodos , Imunoprecipitação/métodos , Proteínas de Ligação a RNA/genética , Transcriptoma , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Células Hep G2 , Humanos , Células K562 , Processos Fotoquímicos , Raios Ultravioleta
17.
Mol Cell ; 61(6): 903-13, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26990993

RESUMO

Transcriptome-wide maps of RNA binding protein (RBP)-RNA interactions by immunoprecipitation (IP)-based methods such as RNA IP (RIP) and crosslinking and IP (CLIP) are key starting points for evaluating the molecular roles of the thousands of human RBPs. A significant bottleneck to the application of these methods in diverse cell lines, tissues, and developmental stages is the availability of validated IP-quality antibodies. Using IP followed by immunoblot assays, we have developed a validated repository of 438 commercially available antibodies that interrogate 365 unique RBPs. In parallel, 362 short-hairpin RNA (shRNA) constructs against 276 unique RBPs were also used to confirm specificity of these antibodies. These antibodies can characterize subcellular RBP localization. With the burgeoning interest in the roles of RBPs in cancer, neurobiology, and development, these resources are invaluable to the broad scientific community. Detailed information about these resources is publicly available at the ENCODE portal (https://www.encodeproject.org/).


Assuntos
Bases de Dados Genéticas , Proteínas de Ligação a RNA/genética , RNA/metabolismo , Transcriptoma/genética , Sítios de Ligação , Humanos , Ligação Proteica , RNA/genética , RNA Interferente Pequeno/classificação , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo
18.
PLoS Genet ; 11(12): e1005734, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26678048

RESUMO

Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney.


Assuntos
Subunidade p50 de NF-kappa B/genética , NF-kappa B/genética , Insuficiência Renal Crônica/genética , Fator de Transcrição STAT1/biossíntese , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição RelA/genética , Envelhecimento/genética , Envelhecimento/patologia , Estudos de Associação Genética , Humanos , Inflamação/genética , Inflamação/patologia , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-6 , Insuficiência Renal Crônica/patologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Transcrição Gênica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
PLoS Genet ; 9(2): e1003325, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468654

RESUMO

The normal aging process is associated with stereotyped changes in gene expression, but the regulators responsible for these age-dependent changes are poorly understood. Using a novel genomics approach, we identified HOX co-factor unc-62 (Homothorax) as a developmental regulator that binds proximal to age-regulated genes and modulates lifespan. Although unc-62 is expressed in diverse tissues, its functions in the intestine play a particularly important role in modulating lifespan, as intestine-specific knockdown of unc-62 by RNAi increases lifespan. An alternatively-spliced, tissue-specific isoform of unc-62 is expressed exclusively in the intestine and declines with age. Through analysis of the downstream consequences of unc-62 knockdown, we identify multiple effects linked to aging. First, unc-62 RNAi decreases the expression of yolk proteins (vitellogenins) that aggregate in the body cavity in old age. Second, unc-62 RNAi results in a broad increase in expression of intestinal genes that typically decrease expression with age, suggesting that unc-62 activity balances intestinal resource allocation between yolk protein expression and fertility on the one hand and somatic functions on the other. Finally, in old age, the intestine shows increased expression of several aberrant genes; these UNC-62 targets are expressed predominantly in neuronal cells in developing animals, but surprisingly show increased expression in the intestine of old animals. Intestinal expression of some of these genes during aging is detrimental for longevity; notably, increased expression of insulin ins-7 limits lifespan by repressing activity of insulin pathway response factor DAF-16/FOXO in aged animals. These results illustrate how unc-62 regulation of intestinal gene expression is responsible for limiting lifespan during the normal aging process.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Homeodomínio , Longevidade , Envelhecimento/genética , Processamento Alternativo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Mucosa Intestinal/metabolismo , Longevidade/genética , Longevidade/fisiologia , Especificidade de Órgãos , Hormônios Peptídicos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA